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Self-induced oscillation systems, described by second order partial 

differential equations with nonlinear boundary conditions, have been 

considered in [l-51. 

Below we consider self-induced oscillations, which under certain con- 

ditions may arise in the motion of high-density fluids in a tube. The 

problem reduces to the solution of first order quasilinear partial 

differential equations with non-periodic boundary conditions. 

1. 'he differential equations describing the unsteady motion of a 

viscous compressible fluid in tubes in terms of a hydraulic resistance 

are [61 

Here u is the average velocity of the 

fluid particles over the cross-section of I8 20 U 

the tube, p the pressure, p the density, 

and S the cross-sectional area of the tube. 
Fig. 1. 

To equations (1.1) and (1.2) must be added 

the equation of state and the condition of isentropy; the function q(u) 

is taken to be linear for laminar flow and quadratic for turbulent 

flow [61. 

We shall consider the pipe flow to occupy the semi-infinite space 

925 
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x>O. If at the end x = 0 the pipe is connected to any machine capable 

of changing the liquid flow (piston pump, valve, turbine, compressor, 
etc. ) , and this machine is isolated from the pipe by a chamber used 

either to regulate the flow or to damp pressure fluctuations (air 

chamber, equalizing tank, compressor surge tank), then the boundary con- 

dition at n = 0 will be 

(1.3) 

where h is a positive constant characterising the type of the chamber, 

rl( t) is a known function of time proportional to the flow volume /7 161. 

We shall consider the flow Q to be a function of u of a “relay” type, 

having sements of multiple-valuedness (Fig. 1). ‘lhen condition (1.3) 
assumes the form 

au (0, 2) 
az= 

9 (4 ww + u 
h (14 

where 7 equals either 7, or q2 according to Fig. 1. 

Assuming that the fluid density p is high and therefore the term 

P -lap/ax may be neglected in equation (1. l), we shall seek periodic 

solutions to our system with boundary conditions (1.4). 

‘Ihe main difficulty lies in integrating equation (1.1) with the term 

p”%/& omitted, under the boundary condition (1.4). Once the velocity 

u(x, t) is found from that, the remaining quantities p, S, p, T are de- 

termined from the linear differential equation (1.2) and known relations. 

Let us consider a more general problem: to find the periodic solu- 

tions to the equation 

with the boundary condition 

au (0, 0 _ 
as Q [u (0, t), a*] (1.6) 

lhe function o(z, y) will be assumed to be equal to Q,(Z) for 

iJ ’ < z < a, and to Qz(z) for a’ < z < p or for p < z < a’; moreover, if 

y < y9 (?(z, y) = Q,(z), and as soon as z reaches the value p’, the func- 
tion Q becomes equal to $(z), i.e. there is a jump from the point z=p’, 

Q = Ql(p') to the point z = p, Q = (2,(p). Similarly, for y > 6, Q = Q2, 
and as soon as z reaches the value a’, the function Q becomes equal to 

QIW, SO that there is a jump from the point z = a', Q = Q2(a') to the 

point z = a, Q = Q1 (a). We assume that Q1 (z) and Q1( z) are some given 
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functions, which may be defined also in the exterior of the 

p’ < z < a and a’ < z < p (p < z < a’) respectively. The 

p’ < z < a and a* < z < F (p < z < a’) have a cornnon section. 

Since condition (1.6) is not periodic, the desired solution of equa- 

tion (1.5) must be of the self-induced oscillation type. We shall de- 

termine the conditions to be imposed on the functions (p, g, Q1 and Q2 

to make these solutions possible. We shall assume the functions T(U), 

g’(u), QI(u) and Cr,(u) to be continuous, as well as their derivatives. 

2. As is well known t83, a smooth solution to the Cauchy problem 

of a quasilinear equation of the type (1.5) exists only in a suffi- 
ciently small neighborhood of a line on which smooth initial data are 

given; and if the initial data given on the line are diseontin~ous, then 

there exists no smooth solution in general in any neighborhood of the 

line, however small. Consequently, we should consider generalized solu- 

tions of equation (1: 5), which are solutions satisfying the conservation 

law written in integral form 

9; u dx - g (u) dt -i- \\q~ (u) dz dt = 0 (2.1) 

c G 

Here G is an arbitrary domain contained in the region of the X, t 

plane in which the solution is sought, and C is the piecewise smooth 

boundary of that region. We shall consider generalized solutions of 

equation (2.1) in a region I; contained in the half-plane x20. 

A solution to (2.1) is a piecewise-continuous function U(X, t), which 

coincides at all points where it is continuous with a solution to (1.5); 

the values of u(n, t) on the two sides of the discontinuity surface are 

connected by the equation 

a 
dt= 

g w - g (u-3 
uf - u- (2-2) 

Here X denotes the coordinate of the jump discontinuity (or shock); 

u’ and U- are the values of u(x, L) at n = X(t) f 0 and x = X(t) - 0 

respectively. In order that such a discontinuity (or shock) be possible, 

we must have the condition 

g’ (u+) < dX/dt <g” (u-) (2.3) 

We now find continuous solutions to equation (1.5); its general solu- 
tion has the form (at being an arbitrary function) 
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We shall seek a periodic solution to equation (1.5) with boundary 

condition (1.6). It is clear from (2.4) that the solution u(n, t) will 
be periodic with period T if @‘l(z) is a periodic function* of period T. 

The function CD”’ is determined from the boundary condition (1.6). Assum- 
ing that the velocity at the entrance of the pipe is known as a function 
of time, ~(0, t) = u,(t), we may write the solution (2.4) as 

t = f (24) -I-- uo-i (F-’ [F (u) - 21) - f (F-1 fF (u - .%)I> (2.5) 

It is clear from (2.5) that the function a-‘(z) will be periodic if 
u,(t) is periodic with the s8me period. Using equation (1.5), we now 
write condition (1.6) in the following fashion: 

‘Ihe value of the function Q(z) in formula (2.7) is either equal to 
Ql(z) or to Qz(z>. We give sane initial value ~(0, t,) = tO. To be de- 
finite, we assume that p(t) - g’(z)Ql(z) < 0, g’(u) > 0 and that Q = 
Q1(z) for z0 > p’ and Q = Q2(z) for z. < (3’ (p > p’) (since the time t 
enters equation (1.5) only up to an additive constant, and does not 
enter (1.6) at all) ; then we have one of the two equations below for 
(2.7) : 

For zs < p’ 

t=!w(u,)=T1+ i 
dz 

0 (2) - g’ (2) Qe (zl * (T ) 
1 

( w(U) =a, O.(Tl)=p 
0 (T-1) == p’, Q(T) = a’ ) 

The quantity T, will be determined below by formula (2.10). 

We first consider the case p’ < z0 < a. Formula (2.8) holds at t = T,, 
al though the value of uo, equal to oft), does not equal the value w(T1). 

* Here and hereafter, -1 in the exponent of the characteristic func- 

tions a+(r). F’“(z), (&2L.. will denote the inverse functions 

of a(t), F(t), o(z)... 
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At the instant T,, the solution to (2.7) starts being described by the 

relation (2.9). As soon as the function C!(t) reaches the value R(T), the 

solution to (2.7) starts to be described by the formula (2.81, in which 

t is replaced by t + T. Thus, the periodic solution 

with the constant T, and the period T, according to 

given by the expressions 

to (2.6) is found 
(2.8) and (2.91, 

T1 = 
o(o) W-,4;,, Ql(4 ’ s T=Tl+ . 

I 
dz 

n (T ) cp (4 - g’ (4 QP (4 
(2.10) 

1 

It is easily seen that for a’ < z0 < p or p < z0 < a’ the periodic 

solution to (2.6) may be found in the same manner. If z,, > max(a, p) or 

zO < min(a’, p’), then th e f unction u,(t) given by (2.8) and (2.9) may 
be periodic only in the limit of t - 0~. 

Consequently, a periodic solution to equation (1.5) with non-periodic 

condition (1.61, for the case g’(u) > 0, q(u) - g’(u)([)l(u) < 0 may exist 

only under the restriction 

min (u’, b’) < u (0, 1) < max (a* p) (2.11) 

If that solution exists, then at the points at which it is continu- 

ous, it is given by formula (2.51, in which the functions o(t) and !J( t) 

are periodic with the period T, and u,(t) is given by 

for nT<t<nT+Tl 

for nT+@<t<(n+l)T 
(n=O, *I,...) (2.12) 

while T, and T are given by the integral (2.10). 

Similar results can be obtained for the remaining cases 

g’ (u) > 07 cp (u) - g’ (u) Ql (4 > 0 
;; I”,’ : 0”’ cp (u) - g’ 0~) Q1 (u) < 0 

u 9 T (4 - g’ (~1 Q1 (u) > 0 

Let us clarify what restriction must be imposed on the functions q(u) 

and g’(u), such that condition (2.11) implies the existence of a solu- 

tion (2.5). If such a solution exists, then a self-induced oscillation 

occurs in the tube with a period dependent on the functions cp, g, C& 

and 02, which enter the equation (1.5) and the boundary condition (1.6), 

as can be seen explicitly from formula (2.10). 

3. Solution (2.5) to equation (1.5) and boundary condition (2.6) has 
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the form 

For nT < w1 {F-l [F(u) -z]} < nT + TI (n = 0, 4 1, . . .) 

t = f (u) + 61-l {F-l [F (u) - xl} - f {F-l IF (u) - a;]} 

For nT + T1 <Q-l {F-l [F (u) - z]} < (n + 1) T (n = 0, k 1. . . .) 

t = f (u) + sZ-‘{F-~ [F (u) - 21) - f{F-‘[F (u) - xl} 

(3-f) 

(3.2) 

(0-l and 9-l are multivalued formulas of their arguments) 

We note that (3.1) and (3.2) follow from (2.5) if the functions o(t), 

Q(t), F(u) are monotonic. 

Let us assume that F'(u) # 0, while the quantities (p(u) - g'(u)Qi(n) 

(i = 1, 2) which have the same signs as the derivatives w'(t) and Q'(t) 

respectively (see (2.8) and (2.9)), also nowhere become equal to zero. 

'Ihe characteristics of equation (1.5) are defined by the relationships 

u = F-” (z - C,) (3.3) 

t = c, + f W’-’ (z - &)I (3.4) 

The curves (3.4) are the characteristics in the n, t plane. By virtue 

of the periodicity of the function t+,(t), the curves (3.4), which lie 

on the boundaries of the half-strip in which the solution (3.1) is de- 

fined, are given by the formulas 

t = nT - f[o (0)l + f {F-‘Lx + F (0 @))I) (n =o, f 1,. . .) (3.5) 

= nT + T, - fIo (T,)l + f V’-l[s + &@‘,))I) (n = o, f 1,. . .) (3.6) 

and correspondingly for solution (3.2), by the formulas 

t = nT f T, - f IQ(T,)f + f {J’-llz + F(Q fTJ)ll (n =o, ziz 1,. . .) (3.7) 

t = (n + f)T - f IQP’)I + f W-‘[s + F (~(T))l} (R = o, of: i, t . .I (3.8) 

Obviously, the half-strips (3.5) to (3.6) and (3.7) to (3.8), which 

overlap partially, must cover the entire region x>O (or else the solu- 

tion will be non-unique). At the intersection of the half-strips (3.5) 

to (3.6) and (3.7).to (3.8), the shock occurs. By virtue of the assumed 

periodicity of the solution, it is sufficient to consider in the x, t 

plane the half-strip n>O, O\<t <T of width T, or the half-strip be- 

tween two characteristics (3.5) with n = 0 and n = 1; in fact, this half- 
strip consists of pieces constituting the half-strip Oft <T. 

We first consider the nei~bophood of the straight line x = 0. A 
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shock, as is well known [Ill, may be formed either from a discontinuity 
of the function (tO( t), or from intersection of characteristics. The 
function u,(t) has discontinuities at the points t = nT, t = nT + T, 

(n = 0, fl, . . .). At these points, shocks will originate from x = 0, if 
the following conditions are satisfied: 

g’ IQ V’)J < g’ IO KJ)J, g’ 10 VJJ < g’ IQ V&J 69) 

Inequality (3.9) is a consequence of condition (2.3) on the possi- 
bility of a shock. Consequently, through the point U(X = t = 0) and the 
point C(x = 0, t =.T,) will pass discontinuity surfaces with initial 
slopes 

dX g I@ ml - g IQ ml dX 
dt= o(O)-Q(T) ’ dt= 

respectively. ?!oreover, the first shock separates the region u = u” in 

which the solution (3.1) holds from the region u = CL+ in which the solu- 
tion (3.2) holds; whereas the second separates the region u = u- in 
which (3.2) holds from the region u = uf, in which (3.1) holds (Fig. 2). 

It is evident that if g’(u) # 0 (g”(u) > 0 or g”(u) < 0), and if con- 
dition (3.9) holds, then in the neighborhood of the t-axis the character- 
istics will diverge for x > 0, so that the solution (2.1) will exist 
and be unique for 0 < x < x0 [llJ. 

In the vertically and horizontally shaded regions, the solutions are 
defined by (3.1) and (3.2) respectively, and the equation of the shocks 

originating from the points 0 and C are found 
from a numerical integration of equation (2.2), 
in which ut and u- are replaced by the appropri- 
ate solution (3.1) or (3.2) (Fig. 2). 

Condition (3.9) shows that the constants a, 

F, a* and p’ must satisfy the inequalities 

g’ (4 < 8’ (45 g’ WI <k?” 0) 
if 4p (4 - g’ (4 Q1 (4 < 0 

It is readily seen that the requirement im- 

posed on the functions g’(u) and q(u) to insure 
that the neighboring characteristics do not 

0 
intersect for x > 0 can be reduced to that 
already imposed above: F’(u) # 0, g’(u) # 0. 

Fig. 2. 
It is now clear how to construct the solu- 

tion to equation (2.1) under the assumptions formulated before on the 
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functions g’(u), q(u) and If)(u) up till the point where the two shocks 
intersect. At the point M where they intersect, where the function 
u(x, t) has three values, it is necessary to consider the question of 
the decay of arbitrary discontinuities [91. Assume, for example, that 
one of the values u1 of the function u(x, t) is determined by character- 
istics from the region in which (3.1) holds, while the other two, I.+ 
and u3, from the region where (3.2) holds. Then at the point bf the con 

dition (2.3) holds 

&?‘G%-) > g’G%+) = g’&-) > g’&s+) (3.41) 75 

5’ t L ince u1 = u1 - holds in the interior 
of the region between the characteristics, 3ZS 
in which the value of u(x, t) is given by 

(3.2), then by virtue of (3.11), condi- 

tion (2.3) holds for the,functions u2- 

and us+: g'(u,-) > g'(u3+), and a shock 0 
fL?YZ 

passes through the point jf with velocity 
Fig. 3. 

dX 
YE-=== 

g (us+) - g (e-3 
l&g+ - i&- 

Fran then on the solution depends only on the values (3.2) of the 

function u(x, tf on the respective characteristics. It remains to study 

the stability of the periodic solution found. 

It is readily shown that equation (1.5) with boundary 

has a stationary solution 

condition (1.6) 

u = F-' [X -j- F (@)I (6 is the value of the function u (2) at Z = 0) (3.12) 

if the equation ~(6) = g’ (-8) Q (6) has 6 as a root. 

Linearizing equation (1.5) and condition (1.6) about the stationary 

solution (3.12) we obtain the stability condition h < 0, and the condi- 

tion for the self-excitation of oscillations [lOI, h > 0, where 

h = g’ (6) {$ ($;$) - Q' W} (3.13) 

Similarly, linearizing the equation (1.5) and boundary condition 

(1.6) about the periodic solution, we obtain the condition of stability 

A < 0 and instability A > 0 of the periodic solutions, where 
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(5 = F’ (~0) - f’ (~0) Q-1 [t - f (uo)], ‘c = t - f’ (~0)) 

Figures 3 and 4 show the functions ~(0, t) and U(X, t). which are 

solutions of (1.5) with g’(u) = u and cp( U) = - pt2 and boundary condi- 

tion (1.4); the numerical values were taken 

to be 
70 

h=1540 c., ql= 2750c~/~ec (U > p’, &/at < 7) 

q,= 1375 cm/ae~ (a’ < u < p, i%+t > 6) 50 

+=0.7145. 1Oma MC+, a= - 99.5600, p = - 13.5924 

a’ = --11.8432, p’ = ~19.8619~~/~e~, 7 = -35.4676 
8 = -21.1574 cl/ncc so 

Curves 1, 2 and 3 correspond to t = 0.056, ,# 

0.112, 0.726 set respeCtlVelY. ff a2 84 at 

4. If the function g'(u) in equation 
Fig. 4. 

(1.5) is small compared to the constant A, 

then in some approximations we may replace (1.5) by the equation 

g+A&(a) (4.1) 

Using (3.1) and (3.2), we obtain explicit expressions for the solu- 

tions of (4.1) 

/-l{z/A+f[o(t-z/A)]) for nT<t-x/A<nT+Tl W=O.fl....) 

U (‘* ‘) =(f-l~r,A+flR(t-z,A)I) for nT+Tl<t-z/A<(n+l)T (4.2) 

‘Ihe characteristics (3.4) in this case are straight lines with slope 

equal to l/A; instead of shocks from the points 0 and C, there will be 

the characteristics x = At and x = A(t - T,) respectively, across which 

the solution may be discontinuous (or its derivative may be discontinu- 

ous). 

With q(u) = - &I, the solution (4.2) becomes 

exp(-b/A)o(t-z/A) for nT<t-x/A<nT+Tl 
u (z* t, = {exp(-b/A)Q(t-z/A) for nT+Tl<t--x/A<(n+l)T (4.3) 
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5. We shall now replace equation (1.5) by the equation 

;+A$--&L+v 

and shall study two problems simultaneously. 

Problem 1. To find a periodic solution of the linear differential 

equation (5.1) with the boundary condition (1.6). 

Problem 2. To find a periodic solution to equation (5.1) with the 

boundary condition 

au a 4 
- = ;ga (0, t) + Q [u (0, t), -1 ax (5.2) 

The solution of these problems can easily be reduced to integrating 

the heat equation in the region z > 0 

i3W PW t = rT / 2n, x = 6-Q, #P=2n/vT 

x=37 I( u=wexp[-((6+vaa)t+ax], a= A/2v 1 (5.3) 

under,the boundary conditions (1.6) and (5.2) respectively. From the 

periodicity of u(z, T) in T with period ~-IT, we get the functional 

equation 

w (2, z + 2~) = w (2, r) exp (- 23~5) (5 = - (6 + ~2) T / 2n) (5.4) 

The solution of the heat equation (5.3) satisfying the functional 

equation (5.4) can be found in [EI ; it is given by formulas (2.1) and 

(2.2) in [121, in this case with j < 0. In order that the function 

u(z, T) be bounded between the constants A, and B, as z - m, (these 

constants appearing in (2.2) of El21 ), the following relationship must 

hold: 

A,+B,/v---=O 

Using the cited formulas (2.1) and (2.2), we get the expression 

u (z, t) = $ A,, exp {[a - (as + 8 / v)ll’] z} i- (5.5) 

+ 5 exp {[a + 6~~1s) (Akcos [ti2kt - &okxl + Bk sin [ti2kt - z)oks]} 
k=l 

It remains to determine the Fourier coefficients A, and B, of the 

function ~(0, t) in (5.5), from the boundary condition (1.6) or (5.2). 

Considering the first problem, we use (5.5) to write (1.6) as 
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k cos kd + I?* sin kz) 
I 

= v (z) (5.6) 

where 

Q (.& & = {;w; ;r P’<Z<% Y-CT 
or cc’<z<P or for f3<z<uP,y>6 (54 

If the function (5.8) has the form (1.4) 

Vl = q1 + hz, 92 = qz -I- hz 

then, using (5.6) to (5.8), we get the coefficients A, and B, 

A, = w1+ 92(~--1) 

nfa-e )'-_---_hf' 
A, = (a+ *pk- h)2 +62a,a 

* _&a-92) 
k -~fb+@P, -h)(1 - COS~~)-~~kS~ kz,] 

Ak c- w !(a + lpPk - h) sin kzl + f)wk (1 - cos kz,)] 

The quantities TV and T are determined for qI > q2 as the smallest 

roots of the transcendental equations 

in which a' = a, 8' = p, y = 6 = 0 for this case. 

In the more general case, we may consider the inverse problem, con- 

sidering the function ua(-r) to have a form similar to (2.12). Expending 

the function I.+,(T) as a Fourier series, we find the coefficients A, and 

B, and consequently, we also determine the form of the functions &(z) 

and C?2(r). 

Now let us return to the solution of Problem 2. Condition (5.2) is 

no different from condition (2.6) when T(U) = - 6u and g'(u) = A. Thus, 

~(0, T), T, and T are found from the known function Q in exactly the 

same way as was shown in Section 2. 'l&e solution of the problem is given 

by expression (5.5)‘ where A, and B, are the Fourier coefficients of the 
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desired function ~(0, T), as given by formula (2.6). 

We now pass to the limit of v equal to zero. It is easily seen that 

solution (5.5) now assumes the form 

(5.9) 

while condition (5.2). becomes (1.6). Thus, in the limit of v 4 0, the 
solution of both problems coincide with (4.3), which is the solution to 

equation (4.1) with q(u) = - &A under boundary condition (1.6). 
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